Hardness Beyond 2×2 Games

Game Theory Course: Jackson, Leyton-Brown \& Shoham

Algorithms

Two example algorithms for finding NE

- LCP (Linear Complementarity) formulation
- [Lemke-Howson '64]
- Support Enumeration Method
- [Porter et al. '04]

Hardness beyond 2×2 games

Early History (skiped in Basic lecture)

- 1928 von Neumann: existence of Equilibrium in 2-player, zero-sum games
- proof uses Brouwer's fixed point theorem;
- led directly to algorithms:
- Danzig '57: equivalent to LP duality
- Khachiyan'79: polynomial-time solvable

Hardness beyond 2×2 games

Early History (skipped in Basic lecture)

- 1928 von Neumann: existence of Equilibrium in 2-player, zero-sum games
- proof uses Brouwer's fixed point theorem;
- led directly to algorithms:
- Danzig '57: equivalent to LP duality
- Khachiyan'79: polynomial-time solvable
- I950 Nash: existence of Equilibrium in multiplayer, general-sum games
- proof also uses Brouwer's fixed point theorem;
- intense effort on equilibrium algorithms:
- Kuhn '6I, Mangasarian '64, Lemke-Howson '64, Rosenmüller '7I, Wilson '7I, Scarf '67, Eaves '72, Laan-Talman '79, Porter et al. '04, ...
- ... all exponential in the worst case

Hardness beyond 2×2 games

The Lemke-Howson Algorithm (skipped in Basic lecture)

- LCP (Linear Complementarity) formulation

$$
\begin{array}{ll}
\sum_{k \in A_{2}} u_{1}\left(a_{1}^{j}, a_{2}^{k}\right) \cdot s_{2}^{k}+r_{1}^{j}=U_{1}^{*} & \forall j \in A_{1} \\
\sum_{j \in A_{1}} u_{2}\left(a_{1}^{j}, a_{2}^{k}\right) \cdot s_{1}^{j}+r_{2}^{k}=U_{2}^{*} & \\
\sum_{j \in A_{1}} s_{1}^{j}=1, \sum_{k \in A_{2}} s_{2}^{k}=1 & \\
s_{1}^{j} \geq 0, s_{2}^{k} \geq 0 & \forall j \in A_{2} \\
r_{1}^{j} \geq 0, r_{2}^{k} \geq 0 & \forall j \in A_{1}, \forall k \in A_{2}, \forall k \in A_{2} \\
r_{1}^{j} \cdot s_{1}^{j}=0, r_{2}^{k} \cdot s_{2}^{k}=0 & \forall j \in A_{1}, \forall k \in A_{2}
\end{array}
$$

Hardness beyond 2×2 games

Support Enumeration Method: Porter et al. 2004 (skipped in Basic lecture)

- Step I: Finding a NE with a specific support

Support Enumeration Method: Porter et al. 2004 (skipeed in Basic lecture)

- Step 2: Smart heuristic search through all sets of support

From Algorithms to Complexity Analysis (skipped in Basic lecture)

- These algorithms have exponential worst-case time complexity.
- So do all known others.
- Can we do better?

From Algorithms to Complexity Analysis (skipped in Basic lecture)

- Reminder of a (small part) of the complexity hierarchy.

NP-complete

Hardness beyond 2×2 games

From Algorithms to Complexity Analysis (skipped in Basic lecture)

So, is it NP-complete to find a Nash equilibrium?

- Strictly speaking, no, since a solution is guaranteed to exist...
- However, it is NP-complete to find a "tiny" bit more info than a

Nash equilibrium; e.g., the following are NP-complete:
I. (Uniqueness) Given a game G, does there exist a unique equilibrium in G ?
2. (Pareto optimality) Given a game G, does there exist a strictly Pareto efficient equilibrium in G ?
3. (Guaranteed payoff) Given a game G and a value v, does there exist an equilibrium in G in which some player i obtains an expected payoff of at least v ?
4. (Guaranteed social welfare) Given a game G, does there exist an equilibrium in which the sum of agents' utilities is at least k ?
5. (Action inclusion) Given a game G and an action $a_{i} \in A_{i}$ for some player $i \in N$, does there exist an equilibrium of G in which player i plays action a_{i} with strictly positive probability?
6. (Action exclusion) Given a game G and an action $a_{i} \in A_{i}$ for some player $i \in N$, does there exist an equilibrium of G in which player i plays action a_{i} with zero probability?

Hardness beyond 2×2 games

From Algorithms to Complexity Analysis
Still, finding even a single Nash equilibrium seems hard; how do we capture that?

- Enter PPAD ("Polynomial Parity Arguments on Directed graphs")
- (Papadimitriou ‘94)
- At a high level:
- FNP problems are constructive versions of NP problems (F stands for "Functional")
- TFNP is a subclass of FNP for problems for which a solution is guaranteed to exist (T stands for "Total")
- PPAD is a subclass of TFNP where the proofs are based on parity arguments in directed graphs

From Algorithms to Complexity Analysis

Where is PPAD?

NP-complete

From Algorithms to Complexity Analysis

Where is PPAD?

NP-complete

Hardness beyond 2×2 games

From Algorithms to Complexity Analysis

The Complexity of the Nash Equilibrium

Theorem: Computing a Nash equilibrium is PPAD-complete...

- for games with ≥ 4 players;
[Daskalakis, Goldberg, Papadimitriou '05]
- for games with 3 players; [Chen, Deng '05] \&
[Daskalakis, Papadimitriou '05]
- for games with 2 players. [Chen, Deng '06]

